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Abstract. Coarse dead wood is an important component of forest carbon stocks, but it is rarely measured in Amazon forests
and is typically excluded from regional forest carbon budgets. Our study is based on line intercept sampling for fallen coarse
dead wood conducted along 103 transects with a total length of 48 km matched with forest inventory plots where standing
coarse dead wood was measured in the footprints of larger areas of airborne lidar acquisitions. We developed models to relate
lidar metrics and Landsat time series variables to coarse dead wood stocks for intact, logged, and burned or logged and burned
forests. Canopy characteristics such as gap area produced significant individual relations for logged forests. For total fallen
plus standing coarse dead wood (hereafter defined as total coarse dead wood), the relative root mean square error for models
with only lidar metrics ranged from 33% in logged forest to up to 36% in burned forests. The addition of historical information
improved model performance slightly for intact forests (31% against 35% relative root mean square error), not justifying the
use of number of disturbances events from historical satellite images (Landsat) with airborne lidar data. Lidar-derived estimates
of total coarse dead wood compared favorably to independent ground-based sampling for areas up to several hundred hectares.
The relations found between total coarse dead wood and structural variables derived from airborne lidar highlight the

opportunity to quantify this important, but rarely measured component of forest carbon over large areas in tropical forests.
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1 Introduction

Intact and disturbed tropical forests play a critical role in the global carbon cycle (Pan et al., 2011). From 1990 through 2007,
tropical forests contributed about 46% of the global carbon sink (Schimel et al., 2015). The largest remaining area of tropical
forest in the Amazon region contains about 50% of the carbon stored in all tropical forests or 60 Pg-C in the living aboveground
5 biomass pool (Saatchi et al., 2011; Baccini et al., 2012). The Brazilian Amazon retains about 80% of its original forest cover
(PRODES-INPE, 2016) and while deforestation rates in Brazil have decreased by about 70% since 2004 (PRODES-INPE,

2016), forest degradation processes including logging, fire, and fragmentation continue to deplete carbon stocks.

Forest degradation is accelerating the rate of tree mortality across the tropics (McDowell et al., 2018), leading to severe losses
10 of live aboveground biomass (AGB) (Berenguer et al., 2014; Cochrane, 2003; Longo et al., 2016; Rappaport et al., 2018) and
gain of coarse dead wood (CDW) in the forest floor. Aboveground live biomass decreased 35% after logging and 55% after
burning + logging in Paragominas Municipality, in the eastern Brazilian Amazon, whereas in Santarem municipality (central
Brazilian Amazon) the aboveground live biomass decreased 18%, 17%, 24% after logging, burning, burning+logging,

respectively (Berenguer et al., 2014).

In the short term, the stocks of CDW increase substantially after forest disturbance by logging and fire. For example, fallen
CDW stocks increased from 55 Mg ha'! in intact forest to 75 Mg ha™! with reduced impact logging, and to almost 110 Mg ha"
!in a conventionally logged forest in Paragominas Municipality (Keller et al., 2004). The importance of CDW is magnified in
degraded tropical forests (Alamgir et al., 2016). In degraded forests, CDW stocks can exceed the live aboveground biomass
20 pool (Gerwing, 2002; Palace et al., 2012). Quantifying the spatial and temporal variability of CDW production and decay is
therefore critical to constrain the magnitude and timing of carbon emissions from forest degradation or climate anomalies such

as droughts (Leitold et al., 2018).

CDW stocks and the rates of decay of CDW constitute large uncertainties in the carbon cycle budget of the Amazon (Aguiar
25 etal., 2012). We have a limited understanding of how CDW of intact and degraded tropical forests varies across space and
time. Traditional forest inventories provide important sources of information for understanding of carbon cycling, but
measurements of CDW in tropical forests are rare, labor intensive, and cost prohibitive for large areas (Chao et al., 2009). As
an alternative, lidar (light detection and ranging) remote sensing offers the possibility to quantify above-ground biomass (AGB)
and CDW over large areas. In contrast to AGB where large number of studies have been developed (e.g. Nelson et al., 1988;
30 Naesset et al., 2006; Nelson, 2010; Asner et al., 2012; Longo et al. 2016) few studies have focused on lidar remote sensing of
CDW and, based on a recent comprehensive review, (Marchi et al., 2018) none has been conducted in intact or degraded

tropical forest.
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Here, we combine a large dataset of airborne lidar (14,870 ha), Landsat images, and forest inventories of CDW at 14 sites
spread across the Brazilian Amazon. Using airborne remote sensing data, we developed the first lidar-derived estimates of
CDW for intact and degraded tropical forests including areas that have been logged, burned, and fragmented by deforestation

for agricultural expansion.

2 Material and methods
2.1 Study sites

As part of the Sustainable Landscapes Brazil project, we collected airborne lidar, forest inventories and measures of CDW
across five states of the Brazilian Legal Amazon (Para, Amazonas, Mato Grosso, Rondonia, and Acre) (Figure 1). The airborne
lidar data used in this study were collected between 2012 and 2015, covered a total area of 14,870 ha and overlapped with 103
CDW transects (48 km of total length sampled within 6 months of the lidar airborne campaigns). Our sites included two forest
types (dense and open evergreen forests) with a moderate climatic variation (precipitation between 1750~ and 2450 mm yr'),
and a large number of disturbance events and processes (Table 1). The dry season length (defined as months with precipitation
< 100 mm per month) varies from five months in Tanguro (TAN), Feliz Natal (FNA) and Tapajos (TAP) regions to three
months in Reserva Ducke (DUC). We sampled intact forests as well as forest disturbed by reduced impact logging,
conventional logging, understory fire, and combinations of logging and fire. We quantified the number of disturbance events
and land-use types using historical Landsat images from between 1984 and 2013 (Longo et al., 2016). We inspected all images
using the Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR). We classified the sites into
5 categories with increasing levels of disturbance: Intact, reduced impact logging, conventional logging, burned, and logged
and burned. We summarized disturbance history by counting the number of degradation events and the time (years) since the
last degradation event.

[Figure 1]

[Table 1]

2.2 Line intercept sampling of fallen CDW

For this study, we define CDW as material greater than 10 cm in diameter as opposed to fine woody debris (< 10 cm) (Harmon
et al., 1995). We used the line intercept method for estimating fallen CDW volume (Brown, 1974; Keller et al., 2004; Palace
et al.,, 2007). The line intercept method is a strip sample of infinitesimal width and the data collected in the field are the

diameters of wood pieces at their points of intersection with the plane perpendicular to the ground above the line (Brown,

-z

1974). CDW volume was calculated as:
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Where V is the volume of CDW on an area basis (m3 ha™'), D (cm) is the diameter of the wood piece at the line intercept and
L (m) is the length of the transect used in sampling (Brown, 1974; Keller et al., 2004). Transect lengths varied from 250 up to
1200 m (16 were 250 m, 86 were 500 m and 1 was 1,200 m). Transects were matched with the inventory plots of living and
dead trees and within the coverage area of lidar flights (Figure 1). We used both square plots and belt transects for forest
inventory. When the inventory plot shape was square, four (4) inventory plots were established along the CDW line intercept
transect (Figure 1). When the inventory plot was a 20 m wide belt transect, the line intercept transects for fallen CDW sampling
bisected the inventory transect. The distance between the transects was at least 50 m in order to maintain independence of the
samples based on an estimate of maximum tree height (Keller et al., 2004; Palace et al., 2007). A total of 5 to 22 CDW transects

were measured at each site.

We classified the wood pieces in five decomposition classes in the field, following published literature (Harmon et al., 1986;
Keller et al., 2004), and converted the volume of CDW into mass by multiplying it by the estimated density of the woody
debris. At all sites, the wood density values used were: 0.60, 0.70, 0.58,0.45 and 0.28 Mg m™ for decomposition classes 1, 2,
3, 4 and 5 respectively (1 = intact; 5 = fragmented woody debris) (Keller et al., 2004).

2.3 Forest inventory of standing CDW

Several Sustainable Landscapes partners participated in forest inventory so we had three sampling designs. The standing CDW
was assessed by using square inventory plots of 40 x 40 m (Sao Felix do Xingu site only) and 50 x 50 m, and also long, narrow
belt transects of 20 x 500 m (Longo et al., 2016). All trees above either 5 cm or 10 cm diameter at 1.30 m (DBH) were tagged,
mapped to the nearest 1 m, and diameters were measured using a metric tape with 1 mm resolution (Longo et al., 2016). We
used a handheld clinometer and metric tape for field measurements of tree height (Hunter et al., 2013). Snag volume was
estimated as a truncated cone using a taper function (Chambers et al., 2000; Palace et al., 2007) for estimating diameter.

Volume was converted to mass using the same classes and densities used for fallen CDW.

2.4 Lidar data acquisition and processing

Geoid Laser Mapping Ltda. (Belo Horizonte, Brazil) acquired small footprint discrete return lidar (maximum of 4 returns per
pulse) during flights in 2012-2014 (Table 1). In 2012 Geoid used an ALTM 3100 (Optech Inc.) while for data acquired in 2013
and 2014 they used a similar ALTM Orion M-200 (Optech Inc.). The height of flights averaged 850-900 m above ground. The
field of view was approximately 11° and the line spacing allowed 65% overlap between adjacent swaths. Coverage area per
site varied from 500 to 1996 ha, with mean return density of at least 13 returns m (Longo et al., 2016) (Table 1). All transects

of fallen CDW and inventory plots were included under the coverage area of lidar flights.
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In order to compare lidar metrics to ground based CDW estimates, we established reference polygons using a buffer of 25 m
on both sides of the fallen CDW transects. The 50-m total width for our polygons corresponds roughly to the maximum height
of a single large tree and was a suitable size to capture canopy gaps. Experiments with narrower transects introduced
considerable noise into gap statistics. Wider transects would introduce spatial overlap among samples thereby compromising
the spatial independence of the sample units. Lidar-CDW models were generated and applied at the same resolution (160 x

160 m, or ~25,000 m?).

The lidar point cloud data was processed to produce lidar metrics using the FUSION software (McGaughey, 2014) for all
returns (all-return metrics) and R environment (R Core Team, 2017) for calculating the metrics when considering only last
laser returns of the forest canopy (last-return metrics). The last-return metrics maximize the penetration through the canopy
profile and better reflect understory structure (Réjou-Méchain et al., 2015). A digital terrain model (DTM) for each site was
supplied by our lidar vendor based on Terrascan software. We previously compared the vendor-provided DTMs with the
NASA G-LiHT algorithms (Cook et al., 2013) and field geodesic GNSS measurements and found that they generally agreed
to within less than 1-m vertical height (RMSE) at a 1-m horizontal resolution (Leitold et al., 2015). We normalized all
vegetation returns to height above ground by subtracting the height of the DTM at 1-m resolution. We sub-sampled lidar point
cloud data by clipping the field plot polygons with the DTM-normalized vegetation returns.

Along with traditional lidar metrics, we also mapped canopy gaps and derived four gap metrics. Forest canopies less than or
equal to 10 m in height with a minimum area of 10 m? in the 1-m resolution canopy height model were considered gaps (Hunter
etal., 2015). Gap areas in each plot were summarized based on gap area (m? ha!); mean gap size (m?); standard deviation of

gap size assuming a lognormal distribution (m?); and gap count (gaps ha™).

2.5 Forest Disturbance History

Based on visual interpretation of Landsat images, we found 30 transects in intact forests, 30 in logged forests, 17 in burned
forests, 14 in logged and burned forests, and 4 in secondary forests (regeneration following complete clearing for agriculture
or pasture). For modeling, transects classified as logged and burned were merged into the burned class. Eight transects were
not classified because we lacked cloud free images (Figure 1 and Table 1). Where degradation was identified, the number of
events ranged from 1 (accounting for 70% of the transects), up to a maximum of 5 in a case where a logging event was followed
by 4 events of burning. The median age since the last disturbance was 4 years, ranging from 0.5 (recently logged) up to 23

years following burning.
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2.6 Statistical models

We developed multivariate linear and nonlinear models relating lidar metrics from a single date acquisition period to CDW.

For all models, we summed the fallen CDW from each transect and the mean value of standing CDW from the associated

forest inventory belt transect or four square plots (Figure 1), normalized for the area sampled. Through our exploration of the

5 data, we found no significant general model that applied across all forests and disturbance types. Therefore, we stratified the

sites into three classes: intact, logged, and burned. Logged sites included both conventional and reduced impact logging, and

burned sites included forests that had been logged and burned. We designated models that used only lidar point cloud metrics

as independent variables for a given forest class as lidar-only models. We also developed historical models that included site

identity or additional land use history information beyond forest class. The land use history information derived from Landsat

10 time series included the number of disturbance events and the years since the last disturbance. Detailed information about all

Landsat and lidar derived metrics are found in the Table 2. The approaches for model selection for lidar only and historical
models are described separately below.

[Table 2]
For lidar-only models, we used the subset selection approach to identify the simplest and most informative combination of
15 variables (Andersen et al., 2014; Miller, 1984). We excluded highly correlated variables (r > 0.80) and calculated the variation

inflation factor (VIF) in the final models to test for multicollinearity.

For the historical models, we used the framework proposed by (Bolker et al., 2009) for input variable selection. We first
selected potential covariates (both Landsat and lidar derived) with expected theoretical relations with CDW. For example, the
20 age since the last disturbance should be negatively correlated with CDW stocks because of decay (Chambers et al., 2000).
After choosing the covariates for logged and burned forests, we fit a full model using ordinary least squares and then performed
a backward selection of the best predictors and their combinations using the Bayesian Information Criterion (BIC). For intact

forests, we used a mixed effect model including site identity as both a fixed and random variable (Pinheiro and Bates, 2000).

25 We log transformed (natural log) the response variables when necessary for improved model prediction and error distribution
assumptions. We then back-transformed using the Baskerville bias corrector (exp(c:2/2)) for model assessment (Baskerville,
1972). We used adjusted R?, relative bias (bias, in %; mean error divided by observed mean) and relative root mean square
error (RMSE, in %; square root of the mean squared error divided by the observed mean) as goodness-of-fit measures for
comparison with other studies on lidar-CDW models (Pesonen et al., 2008). We did not calculate adjusted R? for the linear

30 mixed effect model because of the difference in accounting for the number of parameters in both fixed and random terms,

compared to the ordinary least squares method (Bolker et al., 2009).
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3 Results
3.1 Field sample CDW variability

The overall mean (+standard deviation) total CDW (including fallen and standing dead wood) stock grouped by site was 50.6
(£17.7) Mg ha'!. Individual site averages ranged from 21.8 Mg ha! to 93.0 Mg ha™! (Table 3). When grouped by degradation
5 level and site, average total CDW was lower for burned forests (40.4 £29.7 Mg ha!) than logged forests (70.9 = 19.9 Mg ha™).
In comparison, intact forests grouped by site had average total CDW of 42.4 (+19.7) Mg ha'!. Logged forests had the largest
CDW stocks with average of 70.9 £19.9 Mg ha™!, and recorded the largest CDW stock (150 Mg ha™) in a single transect in
FST, where logging had occurred less than 6 months prior to the data collection. The mean total CDW stock was 21.0 (£ 2.0)
Mg ha'! in TAN intact transects, less than DUC and TAP intact transects. The mean total CDW stock was 57.6 (+ 15.0) Mg
10 ha'and 66.2 (+ 20.0) Mg ha! in DUC and TAP, respectively.
[Table 3]

3.2 Modeling scenarios

The best lidar-based predictor of total coarse wood debris for transects classified as intact was the 75" percentile of last returns

15 (m) (Figure 2a). The gap area (m? ha'') was the best predictor of total coarse wood debris for transects classified as logged
(Figure 2b). For burned forests, total CDW was inversely related to the return fraction above 30 m (Figure 2c¢).

[Figure 2]
Models for total CDW in the lidar only scenarios generally performed well (Table 4; Figure 3). Relative RMSE ranged from
33% for total CDW in logged forest to up to 36% in burned forest (Table 4). The predictions depended, in part, on last return

20 metrics for intact forest classes and notably, gap area for the logged class. The 1* and 10" percentile of all returns, as well as
mode of all return heights, were also important for predictions in the logged and burned classes. Models that separately
considered fallen and standing CDW components produced poorer fits than models of total CDW (Table C2).

[Table 4]
[Figure 3]

25 The inclusion of disturbance history and site identity in the historical models led to modest improvements on the quality of
prediction for total CDW in intact, a very small gain (1% decrease in RMSE) for logged forests and a poorer fit (9% increase
in RMSE) for burned forest (Table 5). The Aistorical model for intact forest included two site related variables in the mixed
model, a site factor and a random slope for canopy relief ratio in each site. Historical models that separately fit fallen and
standing CDW components produced poorer results than for total CDW (Table C3).

30 [Table 5]

Although the lidar only models had a relatively good performance measured by adjusted R? and RMSE, we also examined

whether the models were biased. In general, we found no evidence of biases (Figures 4 and 5) or heteroskedasticity in the
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model residuals (Figure 5). Measured by mean relative bias, the model for burned forests had the poorest performance among
the lidar-only models with a value of -3%. The mean relative bias for the historical scenario were 0.0%, 0.0% and -3.9% for
the intact, logged and burned forests respectively (Table 5).

[Figure 4]

3.3 Landscape level prediction of CDW

For comparison to published field surveys, we applied the /idar-only models over the entire lidar scenes (~1000 ha each) for
three intact sites, one logged site and one burned site at a 166 m resolution (Figure 5). For the Tapajos National Forest intact
site (TAP), the landscape level predicted mean was 51.3 + 18.8 (standard deviation) Mg ha! and the range was 15-91 Mg ha!
after excluding one outlier pixel located on the edge of the lidar scene with 146.0 Mg ha! of CDW (Figure 5a). For the Reserva
Adolpho Ducke intact site (DUC), the landscape mean CDW was 41.6 + 5.0 Mg ha'! and the range was 22-61 Mg ha™' (Figure
5b). For the Fazenda Tanguro intact site (TAN), the landscape mean CDW was 21.0 + 2.0 Mg ha™! (Figure 5¢).

For the Fazenda Cauaxi logged site (CAU), the landscape mean CDW was 84.6 = 27.5 Mg ha'! and the landscape mean for
intact forests at the same site was 54.2 + 8.8 (Figure 5d) Mg ha'. At this site, in the logged forests there were extremely high
predicted values ranging from 161.0 Mg ha™! to up to 200.0 Mg ha'' (Figure 5d). The occurrence of gap areas out of the range
used for calibration contributed to the prediction of those outliers. Finally, for the burned site in Fazenda Tanguro the predicted
landscape level mean of 46.5 Mg ha™! was about twice the mean for undisturbed forest at this site (Figure 5c).

[Figure 5]

4 Discussion
4.1 Lidar models and controls on CDW

Necromass stocks in intact forests are controlled by the balance between inputs from tree and branch fall and loss from CDW
decay (Chao et al., 2009; Palace et al., 2008). The slight increase in the performance of the model for intact forests in the
historical scenario (Table 4 and 5), compared to the lidar only model, highlights that differences in site-specific characteristics
controlling the input and decay of CDW might be important for predicting CDW in Amazonian forests. For the /idar-only
scenario we found an increase in total CDW in the intact forests with increasing values of the 75" percentile of last returns, a
metric related to the overall increase in both canopy and understory height and a correlate of total biomass. Our results are
consistent with Chao et al. (2009), who also found a weak correlation between total CDW and live biomass whereas Martins

et al. (2015) related CDW stocks with mean biomass per tree.
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Logging and fire differentially affected CDW in Amazonian degraded forests. Fire events tended to produce more standing
CDW than fallen, whereas most of the total CDW in logged forest was fallen (data not shown). The ratio between standing
and fallen CDW is suggestive of the predominant mode of tree death. The most pronounced difference between logging and
fire was the effect of gap area on the amount of CDW (Figure 2). A significant amount of CDW is associated with gap creation
in intact Amazonian forests (Espirito-Santo et al., 2014a, 2014b) and our models for logging confirm a strong relation between
gap area and CDW. Considering both age since the last disturbance and number of degradation events in the Aistorical models,
gap area was still positively related to CDW stocks in logged forests whereas the opposite trend was found in burned forests.
For example, for a single event of one-year age in the historical models, the increase of gap area from 300 m* ha'! to up to
1000 m? ha™! led to an increase of 0.06 Mg of CDW per m? of gap in logged forests and a decrease of 0.012 Mg of CDW per
m? of gap in burned forests. For additional fire events, there are compensatory effects controlling CDW stocks. Fires lead to
mortality, thereby increasing stocks, but also consume existing CDW at the time of the fire. The opposite signs of the

parameters for gap area and number of events reflect these opposing controls.

4.2 Comparisons to other lidar-related models

Two classes of models have been used for CDW estimation using lidar: (1) Area-based models estimate CDW indirectly based
on lidar metrics calibrated with data from forest inventory plots (Martinuzzi et al., 2009; Pesonen et al., 2008); and (2)
individual-based models that identify standing dead trees (Casas et al., 2016) and downed trees on the ground (Blanchard et
al., 2011; Polewski et al., 2015). The individual-based approach is generally more appropriate for identifying and estimating
volume or basal area of standing and fallen dead trees in more open canopies, and lack of dense vegetation, compared to the
dense tropical forests that we studied (Blanchard et al., 2011). We employed only area-based models and so we will compare

our results only to other results of this category.

In the area-based approach, CDW metrics may reflect underlying mechanisms generating CDW. For example, lidar metrics
related to gaps such as intensity of returns accumulated closer to the ground and standard deviation of returns were both
included as predictors of fallen CDW volume in a boreal forest from Eastern Finland (Pesonen et al., 2008). The model for
fallen coarse woody volume had a relative RMSE of 51.6%, is similar to the performance of the model for burned sites in our
historical scenario. As we found, in the area-based approach, models for predicting standing necromass are poorer than the
models for fallen woody debris similar to findings in boreal forest (Pesonen et al., 2008). The boreal forest model for standing

dead tree volume had a relative RMSE of 78.8% (Pesonen et al., 2008).

Our landscape level means and ranges at the four intact sites, as well as at the logged and burned site, were similar to published
field surveys. Hayek et al. (2018) found 61.0 = 14.8 Mg ha'of CDW stock in the Tapajos National Forest (51.3 + 18.8 Mg ha!
from this study). Martins et al. (2015) reported a range of 6.7-72.9 Mg ha' of CDW stock in the Reserva Adolpho Ducke

10
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(mean of 41.6 and range of 22-60 Mg ha™! from this study). Keller et al. (2004) found an average of 55.2 + 4.7 Mg ha™! and
74.7 0.6 Mg ha! of fallen CDW in an intact and logged site respectively at Fazenda Cauaxi (54.2 + 8.8 Mg ha™! and 84.6 +
27.5 Mg ha'! from this study).

Preliminary analysis of wall-to-wall maps created with our lidar-only models alongside the histograms (Figure 5) revealed a
unique potential for explaining spatial patterns of CDW in intact forests and assessing the effect of degradation on CDW
stocks. The total CDW stock was higher in eastern and central Amazonian intact forests than in the southern intact forests
(Chao et al., 2009). In addition, the spatial pattern and the dispersion of CDW distribution in TAP and DUC sites illuminates
the mechanisms controlling CDW at landscape level. First, the CDW stocks at DUC are strongly related to topography (Figure
B1). At DUC site, there is a pattern of higher stocks of CDW in the plateau, where the soil is more structured, deeper and less
physically restricted and where AGB stocks are greater (Martins et al 2014). On the other hand, at TAP site, the peaks of CDW
stocks appears to be more spatially disaggregated which might indicate that CDW is associated with natural, small-scale natural
disturbance (Rice et al., 2004). For degraded forest, in the Fazenda Tanguro site we found no published data on CDW but the
increase in CDW after the repeated fire events agree with previous studies (Gerwing, 2002). Finally, the effect of logging (1.5-
fold increase) on CDW stocks at the landscape level at CAU site similar in magnitude to our earlier field studies (Keller et al.

2004).

4.3 Implications for studies of the Amazon carbon budget

Our results demonstrate that small footprint airborne lidar remote sensing can be used to reduce uncertainty of the spatial
distribution of CDW stocks across intact and degraded Amazonian forests. Our approach required systematic classification of
the Amazonian forests into intact, logged, and burned conditions. More complex models using regression trees may eventually
combine classification and CDW estimation using lidar data. We avoided more complex models in this study because our
simple regression models are more transparent and less likely to suffer from overfitting because they rely on few predictors.
Models for estimation of CDW using lidar data only are likely to be less accurate than models for total above-ground biomass
(AGB) when relative uncertainty is compared (e.g. Longo et al. 2016). However, because the absolute values of CDW are
usually in the range of 10 to 20% of AGB except at heavily degraded sites, the absolute uncertainties for CDW are still likely

to be smaller than the absolute uncertainties for AGB.

For any extrapolation approach, it is critical to avoid bias. Overall, we found little bias in our models for estimation of CDW
across forest sites and disturbances types. Nonetheless, we raise two potential concerns. First, in intact forests of the southern
Amazon the stocks of CDW are considerably lower than central and eastern Amazon. This reflects the smaller biomass stocks
and lower wood densities found in that region (Nogueira et al., 2007). Second, in heavily burned forests (more than 3 events

of fire) the in-situ estimates of CDW stocks were well below the airborne-lidar predicted values, probably because CDW was

11
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consumed in the fires. We note that forest degradation from repeated fires is concentrated along the eastern edge of the

Brazilian arc of deforestation (Morton et al., 2013).

Improved knowledge of the spatial distribution of CDW stocks complementing our growing knowledge of aboveground live
biomass distributions will reduce the uncertainties of emissions from deforestation and forest degradation (Aguiar et al. 2012).
We highlight that CDW is relatively more abundant in degraded than in intact forests. Airborne lidar is a valuable tool for
estimates of the impact of forest degradation on the carbon cycle, and our work has the potential to expand understanding
beyond the current lidar approaches that focus exclusively on aboveground biomass. Further development of the approach
presented here may be applied to more extensive and systematic airborne lidar acquisitions or perhaps even spaceborne lidar

from GEDI and/or ICESat-2 missions to estimate CDW across wide areas of tropical forests (Stavros et al., 2017).
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Figure captions
Fig. 1. Location of the study sites in the States of Brazilian Legal Amazon. Site codes are shown at approximate locations (see
Table 1). The lower inset shows the canopy height model (m) scene from AND site as an example of the lidar data covering
the field transects for sampling standing and fallen dead wood. The upper inset shows the sample design used with line intercept
5 samples to quantify fallen CDW and associated square forest inventory plots for aboveground live and standing CDW. . CAU,
FST, JAM, TAL, TAN, DUC and TAP sites were classified as intact; CAU, FST, JAM sites were classified as reduced impact
logging; BON, PAR, BET sites were classified as conventional logging; AND, HUM, BET, SFX, TAL and TAN sites were
classified as burned; AND, BON, FNA and PAR sites were classified as logged and burned; PAR, BET, SFX sites were
classified as secondary; BON, CAU, HUM, SFX, and TAN sites had transects unclassified.

10 Fig. 2. Relationship between total CDW (TCDW) and the best single lidar-based predictor variable of TCDW: (a) the 75th
percentile of last returns (m) (n=30) for transects classified as intact; (b) gap area (m? ha™') (n=23) for reduced impact logging
transects; (c) return fraction above 30 m (last returns) for transects classified as burned (n=30). (a) In(TCDW) = 1.96 + 0.08-75"
percentile of last returns. P<0.01, Adjusted R?: 0.36; (b) TCDW = 1.04-gap area®. P<0.01, Adjusted R%: 0.57; (c) In(TCDW)
=-3.97-11.95return fraction above 30 m. P<0.01, Adjusted R2: 0.25.

15 Fig. 3. Measured values of total CDW (TCDW) versus values predicted by the models for /idar only scenarios for forests
classified as (a) intact (Adjs-R?: 0.44; RMSE (%): 35.1), (b) logged (Adjs-R?: 0.50; RMSE (%): 33.0) and (c) burned (Adjs-
R?: 0.51; RMSE (%): 36.0).

Fig. 4. Residuals versus predicted values of total CDW (TCDW) by the models for /idar only scenario for forests classified as
(a) intact (mean bias (%): -0.41), (b) logged (mean bias (%): 0.00) and (c) burned (mean bias (%): -3.00).

20 Fig. 5. Wall-to-wall maps and histograms of total coarse wood debris predicted by lidar only models at landscape level (166-
m resolution) for intact forest at the Tapajos National Forest (a) the predicted mean was 51.3 = 11.8 Mg ha™! (red dotted line)
and the field-based mean from our database was 66.2 + 20.0 Mg ha™! (black dotted line). For intact forest at Reserva Adolph
Ducke (b) the predicted mean was 41.6 = 5.0 Mg ha™! and the field-based mean from our database was 57.6 + 20.0 Mg ha™'.
For intact forests at Fazenda Tanguro (c) the predicted mean was 21.0 + 2.0 Mg ha™! and field-based mean was 20.6 + 1.8 Mg

25 ha’'. For burned forests (highlighted as a second panel in the CDW map) the predicted mean was 46.5 + 9.8 Mg ha™' and the
field-based mean was 32.5 + 6.0 Mg ha™'. For intact forests at Fazenda Cauaxi (d) the predicted mean was 54.2 + 8.8 Mg ha!
and field-based mean was 33.2 = 10.0 Mg ha™'. For logged forests the predicted mean was 84.6 +27.5 Mg ha'! and the field-
based mean was 60.3 +24.0 Mg ha''; high CDW areas in the norther portion of the image are associated with the main road
through the logging site.
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Table captions

Table 1. Description and location of study sites. Forest status identifies degradation classes, where BRN=burned; CVL=

conventional logging; CVL+BRN=logged and burned; INT=intact; RIL=reduced impact logging; SEC=second growth; and
5 UKN=unclassified.

Table 2. Landsat-derived variables and lidar metrics used as potential covariates for modeling CDW in intact and degraded

Amazonian forests.

Table 3. CDW (mean and standard deviation) by degradation level and site. AGB, standing CDW, fallen CDW and total CDW

are in Mg ha™'.

10  Table 4. Equations, adjusted R?, mean relative bias (%) and relative root mean square error (RMSE in %) of the lidar only
scenario for predicting CDW in intact and degraded forests using lidar variables. rfy m is return fractions between 0 and 1 m
height of the last returns; P75 is the 75" percentile of last returns in meters; gap area is gap area in m? ha''; Mode_all is
mode of all returns in meters. P05,y is the 5™ percentile of all returns in meters; rfuove 30m is return fraction above 30 meters
of all returns. EN is residual following a normal distribution with p and c.

15 Table 5. Equations, adjusted R?, mean relative bias (%) and relative root mean square error (RMSE in %) of the historical
scenario for predicting CDW in intact and degraded forests using Landsat and lidar variables. The parameters of the mixed-
effect model for intact forests are shown in the Table C1 as appendices. Age is the number of years since the last disturbance
event. Gap Area is total gap area in m? ha'!. P05y, is the 5™ percentile of the last returns. Number Event is the count of
degradation events. CRR is canopy relief ratio. EN is residual following a normal distribution with p and o. Estimated

20 parameters by each site (fixed effect) are in the Table C1.
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Table 2.

Landsat

Description

Degradation class
Age since the last degradation
event

Number of degradation events

Status of degradation such as intact, logged, burned and burned after logging.

The age (years) since the last degradation event.

Number of events of logging or burning.

Lidar

Percentiles
Return fraction among height
intervals

Gap metrics

Canopy Relief Ratio (Parker et
al. 2004)

Moments of return distribution
L-moments of return

distribution

Percentiles 01, 05, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 99 of the return distribution.

Fractions of returns among pre-determined height intervals (e.g. from 0 to 1 m) or above a pre-
determined height (e.g. above 20 m).

Mean gap size (m?), standard deviation of gap size, standard deviation of gap size assuming a log-
normal distribution, gap area (m? ha'') and gap count (gaps ha™')

A quantitative descriptor of the relative shape of the canopy defined as:

((Mean height—Min height) / (Max height—Min height))

Mean, median, variance, skewness and kurtosis

L moments (1%, 2", 34 and 4™) are linear combinations of ordered data

values (elevation returns) described by (Hosking, 1990), analogous to traditional moments.
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Appendices

Figure B1. Wall-to-wall map of total CDW and digital terrain model at DUC site.
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Table C1. Fixed and random effects parameters of the historical scenario model for intact forests.

Parameter (fixed effect) Estimate Standard deviation
Intercept 3.4 64.3
Site DUC 49.7 68.4
Site FST 10.4 100.3
Site JAM 1.3 91.4
Site TAL -30.9 96.6
Site TAN -35.6 104.6
Site TAP -63.5 74.9
Canopy relief ratio 119.7 126.2
Random term (canopy relief | Estimate

ratio by site, see Table 5)

Site CAU 752

Site DUC 9.9

Site FST 119.7

Site JAM 79.6

Site TAL 119.7

Site TAN 109.7

Site TAP 324.0
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Table C2. Selected variables (bold indicates positive signal of parameter), adjusted R?, mean relative bias (%) and relative

root mean square error (RMSE in %) of the /idar only scenario for estimating fallen and standing CDW in intact and degraded

forests using lidar variables.

Land use class

Lidar only scenario

Fallen CDW Standing CDW
Bias Bias
Predictors R* RMSE (%) Predictors R* RMSE (%)
(%) (%)
P75 last ret G t,
Intact ASLTCTUENS, 752 051 413 ap coun 850 018  56.0
return fraction 0-1 m Gap count?
SD gap size,
interquartile range
Logged 0.00 0.66 324 - - -
last returns, P10 last
returns
P10 last returns, mode P10 last returns,
Burned all returns. return 6.00 0.39 48.0 3th L moment all returns, 731 043 47.4
b
fraction 25-30 m mode all returns
5
10
15
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Table C3. Selected variables (bold indicates positive signal of parameter), adjusted R?, mean relative bias (%) and relative
root mean square error (RMSE in %) of the historical scenario for estimating fallen and standing CDW in intact and degraded

forests using Landsat and lidar variables.

Land use class Historical scenario
Fallen CDW Standing CDW
Bias Bias
Predictors R*> RMSE (%) Predictors 2 RMSE (%)
(%) (%)
Site Factor, Canopy Gap
Intact Relief Ratio, 0.00 - 28.8 count, -8.50 0.18 56.0
Radom slope Gap count?
Age since logging,
Logging Gap area, P05 last 0.00 0.54 37.2 - - -
returns
) Age since fire, Gap Age since
Burning 54 043 52.2 -7.0  0.11 58.0
area, number of fires fire
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